Comparison of the Influence of Phospholipid-Coated Porous Ti-6Al-4V Material on the Osteosarcoma Cell Line Saos-2 and Primary Human Bone Derived Cells
نویسندگان
چکیده
Biomaterial surface functionalization remains of great interest in the promotion of cell osteogenic induction. Previous studies highlighted the positive effects of porous Ti-6Al-4V and phospholipid coating on osteoblast differentiation and bone remodeling. Therefore, the first objective of this study was to evaluate the potential synergistic effects of material porosity and phospholipid coating. Primary human osteoblasts and Saos-2 cells were cultured on different Ti-6Al-4V specimens (mirror-like polished or porous specimens) and were coated or not with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) for three weeks or five weeks. Selected gene expressions (e.g., classical bone markers: alkaline phosphatase, osteocalcin, osteoprotegerin (OPG), receptor activator of nuclear factor kappa-β ligand (RANKL) and runt-related transcription factor 2) were estimated in vitro. Furthermore, the expressions of osteocalcin and osteopontin were examined via fluorescent microscopy at five weeks (immunocytochemistry). Consequently, it was observed that phospholipid coating potentiates preferences for low and high porosities in Saos-2 and primary cells, respectively, at the gene and protein levels. Additionally, RANKL and OPG exhibited different gene expression patterns; primary cells showed dramatically increased RANKL expression, whereas OPG expression was decreased in the presence of POPE. A synergistic effect of increased porosity and phospholipid coating was observed in primary osteoblasts in bone remodeling. This study showed the advantage of primary cells over the standard bone cell model.
منابع مشابه
The Influence of Elementary Silver Versus Titanium on Osteoblasts Behaviour In Vitro Using Human Osteosarcoma Cell Lines
Purpose. The antimicrobial effect of a silver-coated tumor endoprosthesis has been proven in clinical and experimental trials. However, in the literature there are no reports concerning the effect of elementary silver on osteoblast behaviour. Therefore, the prosthetic stem was not silver-coated because of concerns regarding a possible inhibition of the osseointegration. The aim of the present s...
متن کاملProduction, characterisation, and cytocompatibility of porous titanium-based particulate scaffolds.
Despite its non-matching mechanical properties titanium remains the preferred metal implant material in orthopaedics. As a consequence in some cases stress shielding effect occurs, leading to implant loosening, osteopenia, and finally revision surgery. Porous metal scaffolds to allow easier specialised cells ingrowth with mechanical properties closer to the ones of bone can overcome this proble...
متن کاملMesoporous Bioactive Glass Functionalized 3D Ti-6Al-4V Scaffolds with Improved Surface Bioactivity
Porous Ti-6Al-4V scaffolds fabricated by means of selective laser melting (SLM), having controllable geometrical features and preferable mechanical properties, have been developed as a class of biomaterials that hold promising potential for bone repair. However, the inherent bio-inertness of the Ti-6Al-4V alloy as the matrix of the scaffolds results in a lack in the ability to stimulate bone in...
متن کاملEffect of different Ti-6Al-4V surface treatments on osteoblasts behaviour.
The purpose of the present work was to examine the effect of different Ti-6Al-4V surface treatments on osteoblasts behaviour. Previous work in this laboratory has demonstrated that an ageing treatment reduces metal ion release from this alloy compared to standard passivation procedures. In this study. human osteosarcoma MG-63 were used in short-term in vitro tests to assay for cell viability an...
متن کاملFabrication of Porous Segments Using Ti-6Al-4V Chips for Orthopaedic Applications
Different methods have been evaluated for manufacturing the porous Ti6Al4V alloys according to decreasing stress shielding phenomenon and increasing mechanical compatibility between the metallic components and the host tissue. For this purpose, in this work Ti6Al4V alloy chips were pressed under 400 MPa pressure and then samples were categorized and heated into two groups at 1000 and 1150℃ unde...
متن کامل